High Performance – Question 10

10. An engineer models the rates of the production of an alloy in the first 10 weeks by two new machines A and B respectively by

$$\frac{dx}{dt} = \frac{61t}{(t+1)^{\frac{5}{2}}} \text{ and } \frac{dy}{dt} = \frac{15\ln(t^2 + 100)}{16} \text{ for } 0 \le t \le 10,$$

where x (in million kg) and y (in million kg) are the amount of the alloy produced by machines A and B respectively, and t (in weeks) is the time elapsed since the beginning of the production.

- (a) Using the substitution u = t + 1, find the amount of the alloy produced by machine A in the first 10 weeks. (4 marks)
- (b) Using the trapezoidal rule with 5 sub-intervals, estimate the amount of the alloy produced by machine *B* in the first 10 weeks. (2 marks)
- (c) The engineer uses the results of (a) and (b) to claim that machine B is more productive than machine A in the first 10 weeks. Do you agree? Explain your answer.

 (4 marks)

High Performance – Question 13

- 13. In a supermarket, there are two cashier counters: a regular counter and an express counter. It is known that 88% of customers pay at the regular counter. It is found that the waiting time for a customer to pay at the regular counter follows the normal distribution with mean 6.6 minutes and standard deviation 1.2 minutes.
 - (a) Find the probability that the waiting time for a customer to pay at the regular counter is more than 6 minutes. (2 marks)
 - (b) Suppose 12 customers who pay at the regular counter are randomly selected. Assume that their waiting times are independent.
 - (i) Find the probability that there are more than 10 of the 12 customers each having a waiting time of more than 6 minutes.
 - (ii) Find the probability that the average waiting time of the $\ 12$ customers is more than $\ 6$ minutes.

(5 marks)

- (c) It is found that the waiting time for a customer to pay at the express counter follows the normal distribution with mean μ minutes and standard deviation 0.8 minutes. It is known that exactly 21.19% of the customers at the regular counter wait less than k minutes, while exactly 3.59% of the customers at the express counter wait more than k minutes.
 - (i) Find k and μ .
 - (ii) Two customers are randomly selected. Assume that their waiting times are independent. Given that both of them wait more than μ minutes to pay, find the probability that exactly one of them pays at the regular counter.

(8 marks)

13 a) X~N(66,12)	
P(x>6) = P(z>6-6.6) / IM	
= 0.5 x 0.1915	
2 0.6 915 / IA	
b) (1) Y~ B (0.6915, 12)	
P(1>10) = CH(0.6915)"(1-0.6915)+C17(0.6915)"1M	IM
20.0759 / IA	
(a) V((1)	
$(ii) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	arked.
= 0.5 + 0.4584	t be m
= 0.9584 / (A	will no
7501	urgins '
c) (7) D(X <k) 0.2119="" 0.82)<="" =="" td="" w~n(m,=""><td>Answers written in the margins will not be marked \overline{z}</td></k)>	Answers written in the margins will not be marked \overline{z}
P(Z(K-6.6) = 0.2119 /IMP(W>5.64) = 0.0359	iten in
$\frac{k-66}{12} = -0.8$ $P(Z > \frac{5.64-\mu}{0.9}) = 0.0359$	MI &
K = 5.64 / A 5.64-M = 1.8	Answe
	IA
(77) P(X > 4.2) P(W > 4.2)	
= P(Z > 4.2-6.6) = 0.5 (" mean value=4.2) = 0.5 + 0.4772	
= 0.3 +0+11V = 0.9772 /	
The required prob	
= (2 (a l) / a 12)	l
= C ² (0.86)(0.12) [0.9772)(0.5)	
= 0.43×3 X	

Mid Performance – Question 6

- 6. A random sample of size 10 is drawn from a normal population with mean μ and variance 8. Let \overline{X} be the mean of the sample.
 - (a) Calculate Var(2X + 7).
 - (b) Suppose the mean of the sample is 50. Construct a 97% confidence interval for μ .

(5 marks)

6 9 X~N(A	$(\sqrt{\frac{8}{10}})$	
Var (2X+	7)	
$= 2^2 \text{Var}(\overline{X})$)	
$=4\left(\frac{8}{6}\right)$	✓	IM
= 3.2	<u> </u>	IA
b) A 97 /2 = (50 - 2 = (4 f. 26	confidence inter 17×fo, 50+2.1 4,51.736) X	val for M 7 x fo) X IM+IA

表現中等 — 第八題

- 8. 某農場把其出產的雞蛋裝入箱子中,每個箱子盛有 30 隻雞蛋。一隻隨機選取的雞蛋是變壞雞蛋的概率爲 0.04。
 - (a) 求某個箱子盛有超過 1 隻變壞雞蛋的概率。
 - (b) 現逐一檢查雞蛋箱子。
 - (i) 求第 6 個被檢查的箱子爲第 1 個發現盛有超過 1 隻變壞雞蛋的箱子的概率。
 - (ii) 求在首次發現盛有超過 1 隻變壞雞蛋的箱子時所曾檢查過的箱子數目的期望值。

(7分)

8(9) 所求概算 20 20	
=1-C30(1-004)-C,(0.04)(1	-0.04)/IM+IM
~ 0.338820	
- a 2317	V IA
(b)(7) P=(1-0.338820) (0.33	8820) / IM
~ 0.0428121	
= 0.0428	VIA
(二) 其件等值=0.0428	
~23.361周	X

表現稍遜 — 第一題

- 1. (a) 展開 $(2x+1)^3$ 。
 - (b) 依 x 的升幂次序展開 e^{-ax} 到含 x^2 的項爲止,其中 a 爲常數。
 - (c) 若在 $\frac{(2x+1)^3}{e^{ax}}$ 的展式中, x^2 項的係數是 -4,求 a 的値。

(5分)

表現稍遜 — 第五題

- 5. 考慮曲線 $C_1: y=1-\frac{e}{e^x}$ 及曲線 $C_2: y=e^x-e$ 。
 - (a) 求 C_1 及 C_2 所有交點的 x 坐標。
 - (b) 求 C_1 及 C_2 所圍成區域的面積。

(5分)

5 a) 1 - ex = ex - e		
$-e = e^{2x} - e^{x} \cdot e - e^{2}$		
e2x_ (e+1)ex + e = 0	IA	
$(e^{x} - e)(e^{x} - 1) = 0$		
ex = e = + 1	-	×
X = 1 = X 0 V	IA	
b) $\int_{0}^{1} (e^{x} - e) - (1 - \frac{e}{e^{x}}) dx$	IM	PP-1
$= \int_0^1 \frac{e^x - e - 1 + e}{e^x} dx$		
$= \int_{0}^{1} \frac{e^{x}-1}{e^{x}} dx$,	
$= \int_{0}^{1} 1 - e^{-x} dx$		
$= [x + e^{-x}]$		
= 1.3679 X	ОД	