香 港 考 試 及 評 核 局

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

香港中學文憑考試

HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

練習卷

PRACTICE PAPER

數學 延伸部分 單元二(代數與微積分)

MATHEMATICS Extended Part Module 2 (Algebra and Calculus)

評卷參考

MARKING SCHEME

本評卷參考乃香港考試及評核局專為本科練習卷而編寫,供教師和學生參考之用。學 生不應將評卷參考視為標準答案,硬背死記,活剝生吞。這種學習態度,既無助學生 改善學習,學懂應對及解難,亦有違考試着重理解能力與運用技巧之旨。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for teachers' and students' reference. This marking scheme should NOT be regarded as a set of model answers. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, will not help students to improve their learning nor develop their abilities in addressing and solving problems.

© 香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

PP-DSE-MATH-EP(M2)-1

General Notes for Teachers on Marking

Adherence to marking scheme

- 1. This marking scheme has been updated, with revisions made after the scrutiny of actual samples of student performance in the practice papers. Teachers are strongly advised to conduct their own internal standardisation procedures before applying the marking schemes. After standardisation, teachers should adhere to the marking scheme to ensure a uniform standard of marking within the school.
- 2. It is very important that all teachers should adhere as closely as possible to the marking scheme. In many cases, however, students may have arrived at a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits <u>all the marks</u> allocated to that part, unless a particular method has been specified in the question. Teachers should be patient in marking alternative solutions not specified in the marking scheme.

Acceptance of alternative answers

- 3. For the convenience of teachers, the marking scheme was written as detailed as possible. However, it is likely that students would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, teachers should exercise their discretion in marking students' work. In general, marks for a certain step should be awarded if students' solution indicate that the relevant concept / technique has been used.
- 4. In marking students' work, the benefit of doubt should be given in students' favour.
- 5. Unless the form of the answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they are correct.
- 6. Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.

Defining symbols used in the marking scheme

7. In the marking scheme, marks are classified into the following three categories:

'M' marks	_	awarded for applying correct methods
'A' marks	_	awarded for the accuracy of the answers
Marks without 'M' or 'A'	-	awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. (I.e. Teachers should follow through students' work in awarding 'M' marks.) However, 'A' marks for the corresponding answers should <u>NOT</u> be awarded, unless otherwise specified.

8. In the marking scheme, steps which can be skipped are enclosed by dotted rectangles , whereas alternative answers are enclosed by solid rectangles .

Others

- 9. Marks may be deducted for poor presentation (*pp*), including wrong / no unit. Note the following points:
 - (a) At most deduct 1 mark for *pp* in each section.
 - (b) In any case, do not deduct any marks for *pp* in those steps where students could not score any marks.
- 10. (a) Unless otherwise specified in the question, numerical answers not given in exact values should not be accepted.
 - (b) In case a certain degree of accuracy had been specified in the question, answers not accurate up to that degree should not be accepted. For answers with an excess degree of accuracy, deduct 1 mark for *pp*. In any case, do not deduct any marks for excess degree of accuracy in those steps where candidates could not score any marks.

FOR TEACHERS' USE ONLY

PP-DSE-MATH-EP(M2)-2

	只限教師奓阅 FUR TEACHERS	USE UNLY		
	Solution	Marks	Remarks	
1.	The general term of $(2-x)^9$ is $C_r^9 2^{9-r} (-x)^r$	1M		
	$= C_r^9 2^{9-r} (-1)^r x^r$	1A		
	$\boxed{\frac{\text{Alternative Solution}}{(2-x)^9 = 2^9 - C_1^9 2^8 x + C_2^9 2^7 x^2 - C_3^9 2^6 x^3 + C_4^9 2^5 x^4 - C_5^9 2^4 x^5 + \cdots}$	1M+1A		
	Hence the coefficient of x^5 is $-C_5^9 2^4$ = -2016	1M 1A		
		(4)		
	If the system of homogeneous equations has non-trivial solutions, then $\begin{vmatrix} 1 & -7 & 7 \end{vmatrix}$			
	$\begin{vmatrix} 1 & -k & 3 \\ 2 & 1 & k \end{vmatrix} = 0$	1M+1A		
	$-k^{2} + 7 - 42 + 14k + 7k - 3 = 0$ $k^{2} - 21k + 38 = 0$	1M		
	k = 19 or 2	1A		
		(4)		
-	For $n = 1$, $4^{1} + 15(1) - 1 = 18$ which is divisible by 9. \therefore the statement is true for $n = 1$. Assume $4^{k} + 15k - 1$ is divisible by 9, where k is a positive integer. i.e. let $4^{k} + 15k - 1 = 9N$, where N is an integer. $\therefore 4^{k} = 9N - 15k + 1$ $4^{k+1} + 15(k+1) - 1$ = 4(9N - 15k + 1) + 15k + 15 - 1 (by induction assumption) = 36N - 45k + 18 = 9(4N - 5k + 2) which is divisible by 9 Hence the statement is true for $n = k + 1$. By the principle of mathematical induction, the statement is true for all positive integers n.	1 1 1 1 1 (5)	Withdraw the last mark if " <i>N</i> is an integer" was omitte Follow through	
•	(a) $\frac{2x}{1+x^2} = \frac{2\tan\theta}{1+\tan^2\theta}$ $= \frac{2\tan\theta}{\sec^2\theta}$ $= 2\frac{\sin\theta}{\cos\theta} \cdot \cos^2\theta$ $= \sin 2\theta$	1M 1		
	(b) $\frac{(1+x)^2}{1+x^2} = \frac{1+x^2+2x}{1+x^2}$ = $1 + \frac{2x}{1+x^2}$ Since x is real, we can let $x = \tan \theta$ for some θ . $\therefore \frac{(1+x)^2}{1+x^2} = 1 + \sin 2\theta$ by (a)	1M 1M		

PP-DSE-MATH-EP(M2)-3

只限教師參閱

只限教師參阅 FOR TEACHERS' USE ONLY		
Solution	Marks	Remarks
Since the maximum value of $\sin 2\theta$ is 1, the maximum value of $\frac{(1+x)^2}{1+x^2}$ is 2		
	(5)	-
5. (a) $\cos(x+1) + \cos(x-1) = 2\cos\frac{x+1+x-1}{2}\cos\frac{x+1-x+1}{2} = 2\cos 1\cos x$	1 M	OR $\cos x \cos 1 - \sin x \sin 1$ + $\cos x \cos 1 + \sin x \sin 1$
$\frac{\text{Alternative Solution}}{\cos(0+1) + \cos(0-1)} = k\cos 0$	1 M	
i.e. $k = 2\cos 1$	1A	
(b) $\begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix} = \begin{vmatrix} \cos 1 + \cos 3 & \cos 2 & \cos 3 \\ \cos 4 + \cos 6 & \cos 5 & \cos 6 \\ \cos 7 + \cos 9 & \cos 8 & \cos 9 \end{vmatrix}$	1 M	For column (or row) operation
$= \begin{vmatrix} 2\cos 1\cos 2 & \cos 2 & \cos 3 \\ 2\cos 1\cos 5 & \cos 5 & \cos 6 \\ 2\cos 1\cos 8 & \cos 8 & \cos 9 \end{vmatrix} $ by (a)	1M	For using (a) or sum-to- product formula of cosine
$= 2\cos 1 \begin{vmatrix} \cos 2 & \cos 2 & \cos 3 \\ \cos 5 & \cos 5 & \cos 6 \\ \cos 8 & \cos 8 & \cos 9 \end{vmatrix}$	1 M	
= 0	1A	
	(6)	
6. $\frac{d}{dx}\left(\frac{1}{x}\right) = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$ $= \lim_{h \to 0} \frac{x-x-h}{h(x+h)x}$	1M+1A	
$=\lim_{h\to 0}\frac{-1}{(x+h)x}$	1A	
$=\frac{-1}{x^2}$	1A	
x^2		-
	(4)	-
7. (a) $f(x) = e^x (\sin x + \cos x)$		
$f'(x) = e^x(\sin x + \cos x) + e^x(\cos x - \sin x)$		
$=2e^x\cos x$	1A	
$f''(x) = 2e^x \cos x - 2e^x \sin x$		
$=2e^{x}(\cos x-\sin x)$	1A	
(b) $f''(x) - f'(x) + f(x) = 0$		
$2e^{x}(\cos x - \sin x) - 2e^{x}\cos x + e^{x}(\sin x + \cos x) = 0$	1 M	
$e^x(\cos x - \sin x) = 0$		
$\sin x = \cos x \text{or} e^x = 0 \text{ (rejected)}$ $\tan x = 1$	1A	
$x = \frac{\pi}{4}$ for $0 \le x \le \pi$	1A	
PP-DSE-MATH-EP(M2)-4	(5)	-

PP-DSE-MATH-EP(M2)-4

只限教師參閱

只限教師参阅 FOR TEACHE	CHERS' USE ONLY		
Solution	Marks	Remarks	
(a) Let $x = 2\sin\theta$. $dx = 2\cos\theta d\theta$	1M	OR $x = 2\cos\theta$	
$\int \frac{\mathrm{d}x}{\sqrt{4-x^2}} = \int \frac{2\cos\theta}{\sqrt{4-4\sin^2\theta}} \mathrm{d}\theta$			
$=\int 1 d\theta$	1A		
$= \theta + C$			
$=\sin^{-1}\frac{x}{2}+C$	1A		
(b) $\int \ln x dx = x \ln x - \int x d \ln x$	1M		
$= x \ln x - \int x \cdot \frac{1}{x} dx$			
$\int_{-\infty}^{\infty} x = x \ln x - x + C$	1A		
	(5)		
$x^2 - xy - 2y^2 - 1 = 0 $ (*)			
$2x - x\frac{dy}{dx} - y - 4y\frac{dy}{dx} = 0$	1A		
For the tangents parallel to $y = 2x + 1$, $\frac{dy}{dx} = 2$.			
$\therefore 2x - x(2) - y - 4y(2) = 0$	1M		
y = 0	1A		
By (*), $x^2 - 1 = 0$ $x = \pm 1$	1M		
Hence the tangents are $y - 0 = 2[x - (\pm 1)]$	1M	P 1 1	
i.e. $y = 2x + 2$ and $y = 2x - 2$	1A	For both	
	(6)		
$(-x^2) \int -x^2 \int -x^2 \int x^2 dx$	114	$\int -x^2 - 1 + x^2 = 1$	
(a) $\int xe^{-x^2} dx = \int e^{-x^2} \frac{1}{2} dx^2$	1M	OR $\int e^{-x^2} \frac{-1}{2} d(-x^2)$	
$=\frac{-1}{2}e^{-x^2}+C$	1A		
(b) The volume of the solid $e^2 \left(x^2 - z\right)$		·	
$=2\pi \int_{1}^{2} x \left(\frac{x^{2}}{2} - e^{-x^{2}}\right) dx$	1M+1A	1M for $V = 2\pi \int xy dx$	
$=2\pi \int_{1}^{2} \left(\frac{x^{3}}{2} - xe^{-x^{2}}\right) dx$			
$=2\pi \left[\frac{x^{4}}{8} + \frac{1}{2}e^{-x^{2}}\right]_{1}^{2}$	1M	For using (a)	
$= \left(\frac{15}{4} + e^{-4} - e^{-1}\right)\pi$	1A		
$-\left(\frac{1}{4}+e^{-e}\right)^{\mu}$	(6)		
		1	

PP-DSE-MATH-EP(M2)-5

只限教師參閱

Solution $ \frac{\alpha\beta}{0} \begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix} \\ -\alpha\beta & -\alpha\beta(\alpha + \beta) \\ -\alpha\beta & -\alpha\beta \end{pmatrix} \\ = (\alpha + \beta) \begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix} - \alpha\beta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ = \begin{pmatrix} (\alpha + \beta)^2 - \alpha\beta & -\alpha\beta(\alpha + \beta) \\ \alpha + \beta & -\alpha\beta \end{pmatrix} $	Marks 1A €	Remarks Either one
$= \alpha\beta - \alpha\beta(\alpha + \beta) - \alpha\beta$ $= (\alpha + \beta) \binom{\alpha + \beta - \alpha\beta}{1 0} - \alpha\beta \binom{1 0}{0 1}$	1A <	
$= (\alpha + \beta) \begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix} - \alpha\beta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	1A <	
$= (\alpha + \beta) \begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix} - \alpha\beta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		Either one
$\alpha + \beta = -\alpha\beta$	<	
	1	
	(2)	
$2\alpha A + \alpha^2 I$		
, , , , , , , , , , , , , , , , , , ,	1M	
	1	
ion		
1)	1A	
$= \begin{pmatrix} \beta^2 - \alpha\beta & \alpha^2\beta - \alpha\beta^2 \\ \beta - \alpha & \alpha^2 - \alpha\beta \end{pmatrix}$		
$(\beta - \alpha)(A - \alpha I)$	1	
α and β , we have $(A - \beta I)^2 = (\alpha - \beta)(A - \beta I)$.	1	
$\frac{1}{2} - 2\beta A + \beta^2 I$		
$2\rho_{1}$ ρ_{1}		1
$\beta A - \alpha \beta I - 2\beta A + \beta^2 I \qquad \text{by (a)}$ $\beta A + (\beta^2 - \alpha \beta) I$		
	$\begin{aligned} x_{1}(A - \alpha I) &= (A - \alpha \beta)I \\ x_{2}(A - \alpha I) \\ \hline \frac{\sin n}{\alpha} + \beta - \alpha \beta}{1 - \alpha} - \alpha \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}^{2} \\ - \alpha \beta \begin{pmatrix} \beta - \alpha \beta \\ 1 & -\alpha \end{pmatrix} \\ - \alpha \beta \begin{pmatrix} \alpha^{2} \beta - \alpha \beta^{2} \\ 1 & -\alpha \end{pmatrix} \\ = (\beta - \alpha) \begin{pmatrix} \alpha + \beta & -\alpha \beta \\ 1 & 0 \end{pmatrix} - \alpha \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ = (\beta - \alpha) \begin{pmatrix} \beta & -\alpha \beta \\ 1 & -\alpha \end{pmatrix} \\ = \begin{pmatrix} \beta^{2} - \alpha \beta & \alpha^{2} \beta - \alpha \beta^{2} \\ \beta - \alpha & \alpha^{2} - \alpha \beta \end{pmatrix} \\ = (\beta - \alpha)(A - \alpha I) \\ \hline x \alpha \text{ and } \beta \text{, we have } (A - \beta I)^{2} = (\alpha - \beta)(A - \beta I) \text{.} \end{aligned}$	(2) (2) (2) (2) (2) $(3)A - \alpha\beta I - 2\alpha A + \alpha^{2}I by (a)$ $(3)A + (\alpha^{2} - \alpha\beta)I$ $(3)(A - \alpha I)$ (1) $(3)(A - \alpha I)$ (3) $(4) - \alpha I)$ (3) $(4) - \alpha I)$ (3) $(4) - \alpha I)$ (4)

PP-DSE-MATH-EP(M2)-6

只限教師參閱

只限教師參閱	FOR TEACHERS'	USE ON	ILY
Solution		Marks	Remarks
Alternative Solution 2			
$(A - \beta I)^2 = \left(\begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix} - \beta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)^2$			
$= \begin{pmatrix} \alpha & -\alpha\beta \\ 1 & -\beta \end{pmatrix} \begin{pmatrix} \alpha & -\alpha\beta \\ 1 & -\beta \end{pmatrix}$			
$= \begin{pmatrix} \alpha^2 - \alpha\beta & \alpha\beta^2 - \alpha^2\beta \\ \alpha - \beta & \beta^2 - \alpha\beta \end{pmatrix}$			
$(\alpha - \beta)(A - \beta I) = (\alpha - \beta) \left(\begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix} - \beta \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$	$\begin{pmatrix} 0\\1 \end{pmatrix}$		
$= (\alpha - \beta) \begin{pmatrix} \alpha & -\alpha\beta \\ 1 & -\beta \end{pmatrix}$			
$= \begin{pmatrix} \alpha^2 - \alpha\beta & \alpha\beta^2 - \alpha^2\beta \\ \alpha - \beta & \beta^2 - \alpha\beta \end{pmatrix}$			
i.e. $(A - \beta I)^2 = (\alpha - \beta)(A - \beta I)$		1	
		(3)	
(c) (i) $A = X + Y$			
$\begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix} = s \begin{pmatrix} \beta & -\alpha\beta \\ 1 & -\alpha \end{pmatrix} + t \begin{pmatrix} \alpha & -\alpha\beta \\ 1 & -\beta \end{pmatrix}$			
$= \begin{pmatrix} s\beta + t\alpha & -\alpha\beta(s+t) \\ s+t & -s\alpha - t\beta \end{pmatrix}$		1M	
Comparing the entries, we have $\begin{cases} s\beta + t\alpha = \alpha\\ s + t = 1\\ s\alpha + t\beta = 0 \end{cases}$			
Solving, $s = \frac{\beta}{\beta - \alpha}$ and $t = \frac{\alpha}{\alpha - \beta}$		1A	For both
(ii) Consider the statement " $X^n = \frac{\beta^n}{\beta - \alpha} (A - \alpha I)$) and $Y^n = \frac{\alpha^n}{\alpha - \beta} (A - \beta I)$ ".		
When $n=1$, $X = \frac{\beta}{\beta - \alpha} (A - \alpha I)$ and $Y = \frac{\beta}{\alpha}$,	1	
Assume $X^k = \frac{\beta^k}{\beta - \alpha} (A - \alpha I)$ and $Y^k = \frac{\alpha}{\alpha}$	$\frac{\alpha^{\kappa}}{-\beta}(A-\beta I)$, where k is a		
positive integer.	,		
$X^{k+1} = \frac{\beta^k}{\beta - \alpha} (A - \alpha I) \frac{\beta}{\beta - \alpha} (A - \alpha I) \text{by th}$	e assumption		
$= \frac{\beta^{k+1}}{(\beta - \alpha)^2} (\beta - \alpha) (A - \alpha I) \text{by (b)}$		1 <	
$=\frac{\beta^{k+1}}{\beta-\alpha}(A-\alpha I)$			Either one
$Y^{k+1} = \frac{\alpha^k}{\alpha - \beta} (A - \beta I) \frac{\alpha}{\alpha - \beta} (A - \beta I) \text{by the}$ α^{k+1}	assumption		
$= \frac{\alpha^{k+1}}{(\alpha - \beta)^2} (\alpha - \beta) (A - \beta I) \text{by (b)}$		~	
$=\frac{\alpha^{k+1}}{\alpha-\beta}(A-\beta I)$		1	
P-DSE-MATH-EP(M2)-7			

PP-DSE-MATH-EP(M2)-7

只限教師參閱

	只限教師奓阅 FOR TEACHER	(5° USE UNLY		
	Solution	Marks	Remarks	
	Hence the statement is true for $n = k + 1$. By the principle of mathematical induction, the statement is true for all positive integers n .	1	Follow through	
(iii)	$XY = s(A - \alpha I)t(A - \beta I)$			
	$= st[A^2 - (\alpha + \beta)A + \alpha\beta I] by (a)$			
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	<		
	$YX = t(A - \beta I)s(A - \alpha I)$		Eh4h	
	$= st[A^{2} - (\alpha + \beta)A + \alpha\beta I] by (a)$		For both	
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	1 €		
	$A^n = (X + Y)^n$			
	$= X^{n} + Y^{n}$ by the note given	1 M		
	$=\frac{\beta^{n}}{\beta-\alpha}(A-\alpha I)+\frac{\alpha^{n}}{\alpha-\beta}(A-\beta I) \text{by (ii)}$			
	$=\frac{\alpha^n-\beta^n}{\alpha-\beta}A+\frac{\alpha\beta^n-\alpha^n\beta}{\alpha-\beta}I$	1A		
	$\alpha - \beta$ $\alpha - \beta$			
		(9)		
(a) (i)	$\overrightarrow{OM} = (1-a)\mathbf{i} + a\mathbf{j}$	1A		
(u) (l)	$\overrightarrow{ON} = b(\mathbf{i} + \mathbf{j} + \mathbf{k})$	111		
	$\therefore \overrightarrow{MN} = b(\mathbf{i} + \mathbf{j} + \mathbf{k}) - [(1 - a)\mathbf{i} + a\mathbf{j}]$			
	$= (a+b-1)\mathbf{i} + (b-a)\mathbf{j} + b\mathbf{k}$	1		
<i>(</i> !)				
(ii)	$AB = \mathbf{j} - \mathbf{i}$			
	$\overrightarrow{MN} \cdot \overrightarrow{AB} = 0$			
	$[(a+b-1)\mathbf{i}+(b-a)\mathbf{j}+b\mathbf{k}]\cdot(\mathbf{j}-\mathbf{i})=0$	1M		
	-a - b + 1 + b - a = 0 1	1.4		
	$a = \frac{1}{2}$	1A		
	$\overline{MN} \cdot \overline{OC} = 0$ [(a+b-1) i +(b-a) j +b k] · (i + j + k) = 0	1 M		
	$[(a + b - 1)\mathbf{i} + (b - a)\mathbf{j} + b\mathbf{k}] \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 0$ a + b - 1 + b - a + b = 0	11111		
	$b = \frac{1}{3}$	1A		
	3			
	Alternative Solution			
	$\overrightarrow{AB} \times \overrightarrow{OC} = (-\mathbf{i} + \mathbf{j}) \times (\mathbf{i} + \mathbf{j} + \mathbf{k})$ $= \mathbf{i} + \mathbf{j} - 2\mathbf{k}$	1 M		
	$\overrightarrow{MN} // \left(\overrightarrow{AB} \times \overrightarrow{OC} \right)$			
	$\therefore \frac{a+b-1}{1} = \frac{b-a}{1} = \frac{b}{-2}$	1 M		
		1141		
	Solving, we get $a = \frac{1}{2}$ and $b = \frac{1}{3}$.	1A+1A		

PP-DSE-MATH-EP(M2)-8

12.

只限教師參閱

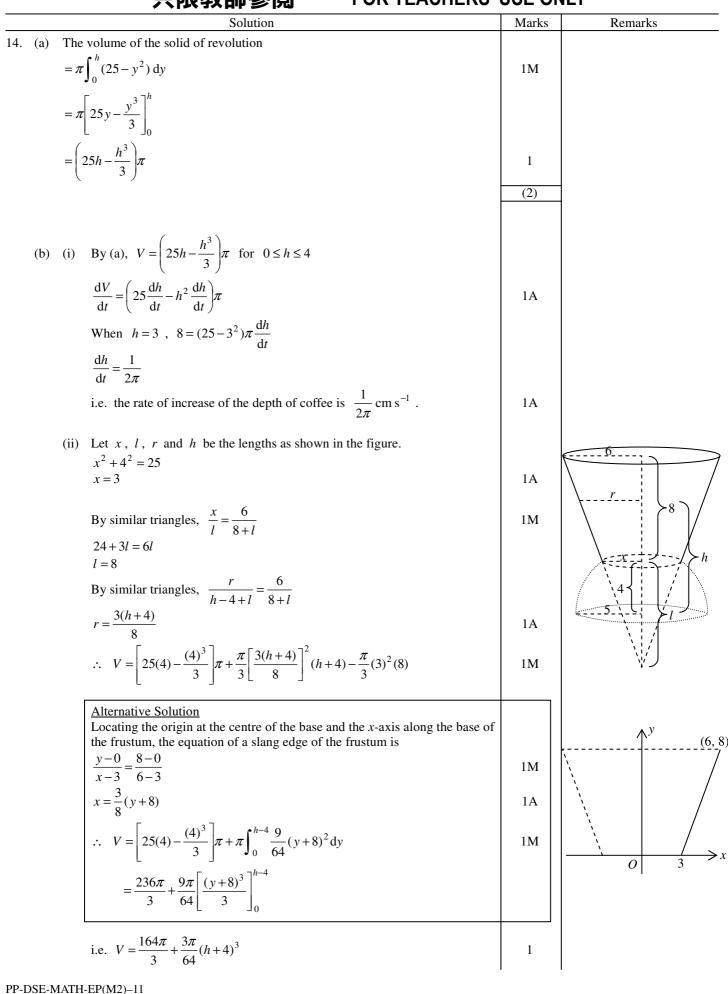
	只限教師参阅 FOR TEACHERS?	USE OR	
	Solution	Marks	Remarks
(iii)	$\overrightarrow{MN} = \frac{-1}{6}\mathbf{i} - \frac{1}{6}\mathbf{j} + \frac{1}{3}\mathbf{k}$ The shortest distance between the lines <i>AB</i> and <i>OC</i> = $ \overrightarrow{MN} $		
	$= \sqrt{\left(\frac{-1}{6}\right)^{2} + \left(\frac{-1}{6}\right)^{2} + \left(\frac{1}{3}\right)^{2}}$	1M	
	$=\frac{\sqrt{6}}{6}$	1A	
		(8)	
(b) (i)	$\overrightarrow{AB} \times \overrightarrow{AC} = (-\mathbf{i} + \mathbf{j}) \times (\mathbf{j} + \mathbf{k})$ $= \mathbf{i} + \mathbf{j} - \mathbf{k}$	1A	C Ť
(ii)	Let the intersecting point of the two lines OG and MN be P .		N
	Since <i>P</i> lies on <i>MN</i> , let $\overrightarrow{MP} = \lambda \overrightarrow{MN}$. $\overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{MP}$ $= \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \lambda \left(\frac{-1}{6}\mathbf{i} - \frac{1}{6}\mathbf{j} + \frac{1}{3}\mathbf{k}\right)$	1M	
	$=\frac{3-\lambda}{6}\mathbf{i}+\frac{3-\lambda}{6}\mathbf{j}+\frac{\lambda}{3}\mathbf{k}$	1A	
	Since <i>P</i> lies on <i>OG</i> , $\overrightarrow{OP} // (\overrightarrow{AB} \times \overrightarrow{AC})$. $\therefore \frac{3-\lambda}{6} = -\frac{\lambda}{3}$ $\lambda = -3$	1 M	P
	Alternative Solution		
	Since <i>P</i> lies on <i>OG</i> , $\overrightarrow{OP} // (\overrightarrow{AB} \times \overrightarrow{AC})$. Let $\overrightarrow{OP} = t(\mathbf{i} + \mathbf{j} - \mathbf{k})$	1M	
	$\therefore \overrightarrow{MP} = t(\mathbf{i} + \mathbf{j} - \mathbf{k}) - \left(\frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}\right)$ $= \frac{2t - 1}{2}\mathbf{i} + \frac{2t - 1}{2}\mathbf{j} - t\mathbf{k}$	1A	
	Since P lies on MN, MP // MN. $\frac{2t-1}{2} = \frac{-t}{1}$	1M	
	$\therefore \frac{\overline{2}}{\frac{-1}{6}} = \frac{-t}{\frac{1}{3}}$ $t = 1$		
	Hence the coordinates of P are $(1, 1, -1)$.	1A	
		(5)	

PP-DSE-MATH-EP(M2)-9

只限教師參閱

只限教師參閱

FOR TEACHERS' USE ONLY


	只限教師參閱 FOR TEAC	HERS' USE ONLY	
	Solution	Marks	Remarks
13. (a) Let $u = x$		1 M	
\therefore du = 0	$dx = 0, \ u = -p ; \text{ when } x = 2p , \ u = p .$		
		1.4	
$\therefore \int_0^1$	$(x-p)dx = \int_{-p}^{p} f(u)du$	1A	
c ² <i>p</i>	= 0 since f is an odd function	1	
$\therefore \int_0 [1]$	$f(x-p) + q]dx = 0 + [qx]_0^{2p}$		
	=2pq	1A	
		(4)	
(b) $\frac{\sqrt{3} + \tan\left(\frac{\sqrt{3} - \tan\left(\sqrt{3} + \tan\left(\sqrt{3}$	$\frac{\left(x - \frac{\pi}{6}\right)}{\left(x - \frac{\pi}{6}\right)} = \frac{\sqrt{3} + \frac{\tan x - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}\tan x}}{\sqrt{3} - \frac{\tan x - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}\tan x}}$	1M	
	$= \frac{3 + \sqrt{3} \tan x + \sqrt{3} \tan x - 1}{3 + \sqrt{3} \tan x - \sqrt{3} \tan x + 1}$ $= \frac{1 + \sqrt{3} \tan x}{2}$	1 (2)	
	$\sqrt{3} \tan x dx = \int_{0}^{\frac{\pi}{3}} \ln \left[\frac{\sqrt{3} + \tan\left(x - \frac{\pi}{6}\right)}{\sqrt{3} - \tan\left(x - \frac{\pi}{6}\right)} \cdot 2 \right] dx \text{by (b)}$ $= \int_{0}^{\frac{\pi}{3}} \left[\ln \frac{\sqrt{3} + \tan\left(x - \frac{\pi}{6}\right)}{\sqrt{3} - \tan\left(x - \frac{\pi}{6}\right)} + \ln 2 \right] dx$	1M	
$f(-x) = \ln x$	$f(x) = \ln \frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x} .$ $\ln \frac{\sqrt{3} + \tan(-x)}{\sqrt{3} - \tan(-x)}$		
$= \ln$	$\frac{\sqrt{3} - \tan x}{\sqrt{3} + \tan x}$ $\left(\frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x}\right)^{-1}$	> 1M	
=-1 \therefore f(x)	is an odd function) 1A	
$\therefore \int_{0}^{\frac{1}{3}} \ln x$	$u(1 + \sqrt{3} \tan x) dx = \int_{0}^{2 \times \frac{\pi}{6}} \left[f\left(x - \frac{\pi}{6}\right) + \ln 2 \right] dx$ $= \frac{\pi \ln 2}{3} \text{by (a)}$	1A (4)	

PP-DSE-MATH-EP(M2)-10

只限教師參閱

只限教師參閱

FOR TEACHERS' USE ONLY

只限教師參閱

只限教師參閱 FOR TEACHERS'	USE ON	NLY
Solution	Marks	Remarks
(iii) After 15 seconds, $\frac{164\pi}{3} + \frac{3\pi}{64}(12+4)^3 - 2 \times 15 = \frac{164\pi}{3} + \frac{3\pi}{64}(h+4)^3$	1M	
$\frac{3\pi}{64}(h+4)^3 = 192\pi - 30$		
$h+4 = 4 \left(\frac{64\pi - 10}{\pi}\right)^{\frac{1}{3}}$		
$h+4=4\left(\frac{\pi}{\pi}\right)$	1A	
$h \approx 11.73 > 4$		
$V = \frac{164\pi}{3} + \frac{3\pi}{64}(h+4)^3$		
$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{9\pi}{64}(h+4)^2 \frac{\mathrm{d}h}{\mathrm{d}t}$	1A	
	17.1	
After 15 seconds, $-2 = \frac{9\pi}{64} \left[4 \left(\frac{64\pi - 10}{\pi} \right)^{\frac{1}{3}} \right]^{\frac{2}{3}} \frac{dh}{dt}$		
<u>dh</u> 8		
$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-8}{9\pi^{\frac{1}{3}}(64\pi - 10)^{\frac{2}{3}}}$		
≈ -0.0183		
i.e. the rate of decrease of the depth of coffee is $0.0183 \mathrm{cm s^{-1}}$.	1A	
	(11)	-
		-
	I	l
只限教師參閱 FOR TEACHER	9. 09F	UNLT